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Abstract Fullerenes have many uses including in medical and electronic nanode-
vices. High pressure liquid chromatography (HPLC) columns are generally used to
extract a certain structure of fullerne from a mixture of them. In this paper, we investi-
gate the interactions between various types of fullerenes and a station phase in HPLC
known as pentabromobenzyl (PBB). The Lennard-Jones potential and a continuum
approach are employed to determine the van der Waals energy of these interactions
within the HPLC columns. The equilibrium configurations for any given distance
between a fullerene and the centre of a PBB are obtained. Results of this study may
assist the design of a chromatography column for fullerene separation.
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1 Introduction

The fullerene family, especially C60, has appealing structural, electrochemical and
physical properties, which can be exploited in various fields. For example, medical
applications of fullerenes include antioxidant activity, antiviral activity and their use
in drug delivery [1,15]. Another potential application of fullerenes is as containers for
information-carrying spin systems for quantum computing. In particular, Harneit and
co-workers [8,9] explore endohedral fullerenes N@C60 and P@C60 as quantum infor-
mation carriers. For extensive details of various potential applications of fullerenes,
we refer the reader to [5].

To employ fullerenes in many applications, it is required that single fullerene struc-
tures be extracted from a compound of carbon structures. Chromatography is the
method for such separation. Generally, in a column chromatography, the mixture is
dissolved in a fluid which is known as the mobile phase. The mobile phase is then
passed through a column which contains a structure attached to another material called
the stationary phase. The various constituents of fullerenes in the mixture travel at dif-
ferent velocities, causing them to separate. The separation is based on differential
partitioning between the mobile and stationary phases. Differences in rates of move-
ment through the stationary phase in the column give rise to different retention times
of the fullerene molecules.

Commercially, the separation of fullerenes generally involves the use of high pres-
sure liquid chromatography (HPLC). There are varieties of HPLC columns, which can
separate different structures of fullerenes, including C60, C70, C60 = O and endohe-
dral fullerenes [10]. Stationary phases in the HPLC columns include pyrenylpropyl
(buckyprep), phenothiazinyl (buckyprep-M) and pentabromobenzyl (PBB). PBBs are
used as flame retardants and may be added to plastics to resolve their flammability. As
an example, this paper models the interaction between various structures of fullerenes
and a PBB. Understanding these interactions will enhance the performance of HPLC.

The HPLC is a basic laboratory procedure and can be used to determine the C60 :
C70 ratio in a chemistry lab [16]. The endohedral fullerenes have been studied by a
number of authors [4,11,12,14] who believe that the implanted atom will enhance the
magnetic property of the system. Goedde et al. [7] use the HPLC technique to purify a
mixture of N@C60 and C60. They observe that nitrogen atoms remain in the C60 during
the process and maintain atomic configuration. Further, Suetsuna and co-workers [13]
separate and identify N2@C60 and N@C60 using HPLC. They report that their work
was the first to show the existence of N2@C60 as endohedral C60 complex form.

As the interaction between fullerenes and PBBs is principally through van der
Waals forces, it is appropriate to adopt the Lennard-Jones potential together with a
continuum approach. In the continuum approach, atoms on a molecule are assumed
to be uniformly distributed over its surface. As a result, the sum of all pair-wise
interactions among atoms between two non-bonded molecules can be replaced by the
double integral over the surfaces of the molecules multiplying by the atomic surface
densities of each molecule. Through this technique, an analytical expression for the
interaction energy between fullerenes and PBBs is obtained; these results can be used
to elucidate the separation mechanisms within the HPLC columns. For more details
of this approach we refer the reader to Girifalco et al. [6] and Cox et al. [2,3].
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Fig. 1 Continuum model of a
PBB molecule

This paper is structured as follows. In the following section, we detail the continuum
models for a PBB and each of the fullerene structures. The interaction energy for the
PBB and the fullerene structures are studied in Sect. 3. Numerical results for the four
structures of fullerenes are presented in Sect. 4. Finally, the conclusions are given
in Sect. 5. The mathematical derivations for the interaction energies between a point
and a sphere, a point and a ring, a ring and a sphere and a point and an ellipsoid are
presented in Appendices.

2 Continuum model for fullerene structures

In this section, we introduce a continuum approach in order to model the van der Waals
interaction between a PBB and different types of fullerene structures.

A PBB molecule consists of six carbon atoms, five bromine atoms and one silicon
atom. Each carbon atom is located at the vertex of a hexagonal lattice; the remaining
atoms are connected to a carbon atom. Because the differences in bond lengths between
Br-C and Si-C are very small, we assume in this model they are equal. Thus, a PBB
molecule can be modelled as a combination of two concentric rings where atoms are
uniformly distributed on each ring. The inner ring comprises carbon atoms and the
outer ring is made up of bromine and silicon atoms, as depicted in Fig. 1. The atomic
density for each ring is equal to the number of atoms divided by its circumference.

A C60 fullerene consists of sixty carbon atoms distributed over the surface of a
sphere. In our model, we assume that carbon atoms are distributed uniformly over
the surface of the sphere with an atomic surface density defined by the number of
carbon atoms divided by the surface area of the sphere. A schematic model of the C60
fullerene is shown in Fig. 2a.

A N@C60 molecule consists of a nitrogen atom located at the centre of a C60
fullerene. Here, we model a N@C60 molecule as a sphere with a point located at its
centre as shown in Fig. 2b. Again, we assume that sixty carbon atoms are uniformly
distributed over the surface of the sphere.

A C60 = O molecule comprises an oxygen atom connected to carbon atoms of
a C60 fullerene via a double bond σ . Again we use a continuum model for the C60
molecule. Since we cannot determine exactly the position of the oxygen atom on the
surface of the fullerene, we assume that the oxygen atom is located on the surface of
an outer sphere, as shown in Fig. 2c, which has radius equal to the sum of the radius of
the C60 fullerene and the bond length of C–O. In this study the bond length between
a carbon and an oxygen atoms is taken to be 1.43 Å.
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(a) (b)

(c) (d)

Fig. 2 Continuum models of a C60, b N@C60, c C60 = O and d C70

Table 1 Numerical values of radii and atomic densities

Radius of inner carbon ring on PBB 1.400 Å

Radius of outer Br-Si ring on PBB 3.340 Å

Radius of C60 fullerene 3.55 Å

Radius of oxygen sphere on C60 = O 4.98 Å

C70 equatorial semi-axis length 3.59 Å

C70 polar semi-axis length 4.17 Å

Atomic line density of inner carbon ring on PBB 0.682 Å−1

Atomic line density of outer Br-Si ring on PBB 0.286 Å−1

Atomic surface density of C60 0.379 Å−2

Atomic surface density of oxygen sphere on C60 = O 0.00321 Å−2

Atomic surface density of C70 0.3896 Å−2

Finally, a C70 molecule can be modelled as a spheroid (i.e. an ellipsoid with two
equal major axes) and carbon atoms are assumed to be uniformly distributed over its
surface as depicted in Fig. 2d.

Values of radii and atomic densities for these molecules are given in Table 1.
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Fig. 3 Model for the interaction
between a ring and a sphere

3 Interactions between a PBB and fullerenes

3.1 PBB and C60 fullerene

As mentioned in Sect. 2, a PBB molecule is modelled as a combination of a carbon
ring and a bromine-silicon ring, and a C60 molecule is modelled as a sphere, thus the
interaction energy between a PBB and a C60 fullerene can be obtained from the sum
of the interactions between the two rings and the C60 molecule, namely

EP B B−C60 = EC−C60 + EBr Si−C60 . (1)

The schematic illustration for the model of the interaction between a ring and a
sphere is presented in Fig. 3. In Fig. 3, we use a rotational angle φ and a distance
between the two centres ε to describe the relative positions of the ring and the sphere.

Assuming a continuum approach the interaction energy between a ring and a sphere
is given by

Ering−sphere = ηringηsphere

∫

C

∫

S

V (ρ)d Sd�, (2)

where ηring and ηsphere are the line density of a ring and the surface density of the
sphere, respectively, V (ρ) is a potential function and here we adopt the Lennard-Jones
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Table 2 Lennard-Jones parameters

Atom ε (kcal/mol) σ (Å)

C 0.0951 3.473

Br 0.3700 3.519

Si 0.3100 3.804

N 0.0774 3.263

O 0.0957 3.033

potential which is given by

V (ρ) = − A

ρ6 + B

ρ12 , (3)

where ρ is Euclidean distance between a line element d� on the ring and a surface
element d S on the spherical surface, A = 4εσ 6 and B = 4εσ 12 are the attractive and
the repulsive constants, respectively. Values of the well depth ε and the van der Waals
diameter σ for various types of atoms used in this paper are given in Table 2. The
Lennard-Jones parameters (ε and σ ) are originally defined for the interaction between
two atoms of the same kind. For interactions between two atoms of different kinds, ε
and σ are calculated using Lorentz-Berthelot mixing rules, namely εXY = (εXεY )

1/2

and σXY = (σX + σY )/2. We note that for the interaction between the Br-Si ring and
the C60 molecule, the attractive and the repulsive constants are calculated based on
the portion of contribution from bromine and silicon atoms in the Br-Si ring. As such
we have

A = 5ABr−C + ASi−C

6
, B = 5BBr−C + BSi−C

6
. (4)

In Appendix C, we obtain an analytical expression (18) for the interaction energy
of a C60 fullerene and a PBB system. At a given distance between the two centres of
the PBB and the C60 fullerene, the equilibrium configuration of the two molecules can
be determined by minimizing the interaction energy between them. As the distance
varies, the equilibrium configuration changes. All possible equilibrium configurations
for a PBB interacting with a C60 molecule are shown in Fig. 4.

3.2 PBB and N@C60

The interaction between a PBB and a N@C60 can be found from the sum of the
interactions of the PBB with the C60 fullerene and the nitrogen atom,

EP B B−N@C60 = EP B B−C60 + EP B B−N . (5)

The interaction energy between the PBB and the fullerene C60 (EP B B−C60 ) is as
shown in Sect. 3.1, while the interaction between the PBB and the nitrogen atom can
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Fig. 4 Equilibrium configurations and corresponding local minimum energies for a PBB molecule inter-
acting with a C60 fullerene as the distance between the two centres varies

be calculated as the sum of two interactions, namely carbon ring–nitrogen atom and
bromine-silicon ring–nitrogen atom. Thus we have

EP B B−N = EC−N + EBr Si−N . (6)

The interaction energy between an atom and a ring is given by

Eatom−ring = ηring

∫

C

V (ρ)d�, (7)
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where V (ρ) is the Lennard-Jones potential and ρ is the distance between the atom and
a line element d� of the ring. The mathematical derivation for the interaction between
an atom and a ring is given in Appendix B. We note that the relative positions of the
nitrogen atom and the ring can also be described by the same pair of parameters ε
and φ as shown in Sect. 3.1 because the nitrogen atom is assumed to be located at
the centre of the sphere. The attractive and the repulsive constants for the interaction
between Br-Si ring and N can be calculated similarly to those of Br-Si ring and C60
sphere Eq. (4). Using (16) for EP B B−N and substituting (27) for n = 3 and 6 into
(18) for EP B B−C60 , and varying the distance between the two centres ε, all possible
equilibrium configurations of a PBB interacting with a N@C60 are given in Fig. 5.

3.3 PBB and C60 = O

The total interaction between a PBB and a C60 = O can be derived from the sum of
two interactions of the PBB with the inner and outer spheres, (i.e. C60 and oxygen
sphere). As a result we have

EP B B−C60=O = EP B B−C60 + EP B B−O . (8)

Because the oxygen atom is assumed to be located on the outer spherical surface,
the energy EP B B−O can be obtained by summing up the two interactions between
carbon and bromine-silicon rings and the oxygen sphere. Again, the attractive and
repulsive constants for the interaction between Br-Si ring and oxygen sphere can be
calculated similarly to those of Br-Si ring and C60 sphere Eq. (4).

From (18) and (8), we determine all possible equilibrium configurations for the
interaction of a PBB and a C60 = O depending on the distance between the two
centres (see Fig. 6).

3.4 PBB and C70

In this case, the total interaction energy can be obtained from the sum of the two
interactions of carbon and bromine-silicon rings with the ellipsoidal fullerene C70.
The schematic illustration for the interaction between a ring and an ellipsoid is given
in Fig. 7. Here, we use three rotational angles (φ, θ and ζ ) and a distance between the
two centres ε to describe relative positions of a ring and an ellipsoid.

In Appendix D, the total interaction energy of this system is obtained analytically.
Using (28) all possible equilibrium configurations of a PBB and a C70 fullerene as the
distance between the two centres varies are illustrated in Fig. 8. We note that when
distance between the two centres is greater than or equal to 7.16 Å, the equilibrium
configurations are obtained at ζ = θ = 0. Further, when ε is less than 7.16 Å,
equilibrium configurations are obtained at ζ = π/2 and φ = 0.
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Fig. 5 Equilibrium configurations and corresponding local minimum energies for a PBB molecule inter-
acting with a N@C60 structure as the distance between the two centres varies

4 Results and discussion

The Lennard-Jones potential function and the continuum approach are employed to
determine the van der Waals interactions between a PBB and various types of fullerene
structures. In the cases of the interactions between a PBB and symmetric fullerenes,
namely C60, N@C60 and C60 = O, the global minimum energies occur at the dis-
tances 7.23, 7.23 and 7.48 Å, respectively, above the fullerene centres where the
rotational angle φ of the PBB is zero. These positions correspond to the energies
of −14.660,−14.703 and −12.588 kcal/mol, respectively. Moreover, for any given
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Fig. 6 Equilibrium configurations and corresponding local minimum energies for a PBB molecule inter-
acting with a C60 = O structure as the distance between the two centres varies

rotational angle φ and the distances between a PBB and a fullerene centres, the equi-
librium location can be determined as shown in Figs. 4, 5, 6 and 8.

We observe similar behaviours for the systems of C60 and N@C60. This is due to
the fact that there is only one nitrogen atom in the latter case which makes only a
small contribution of the van der Waals interaction to the system. On the other hand, a
sphere of oxygen atom in the case of C60 = O plays a major role in the determination
of the interaction energy, as such we obtain slightly lower minimum energy.

In the system of a PBB interacting with a C70, we consider both the interactions in the
equatorial semi-axis and the polar semi-axis. In the equatorial direction, the PBB ring is
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Fig. 7 Model for the interaction
between a ring and a spheroid
C70

Fig. 8 Equilibrium configurations and corresponding local minimum energies for a PBB molecule inter-
acting with a C70 fullerene as the distance between the two centres varies

likely to locate parallel to the C70 surface with φ = 0. Once the distance from the centre
of the C70 to the PBB is greater than 6.25 Å, the system is energetically favourable, and
the global minimum energy occurs at the distance 6.73 Å corresponding to the energy
−13.861 kcal/mol. In terms of the polar direction, we observe various configurations
of PBB, as shown in Fig. 8. However, the most stable configuration occurs when the
PBB is parallel to the C70 surface in the polar semi-axis with the distance 7.16 Å
from the centre of the C70 and the corresponding energy is −11.675 kcal/mol. The
summary of the global minimum energy and the equilibrium distance for the four
types of fullerenes are presented in Table 3.
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Table 3 Global minimum energy and equilibrium distance for different types of interactions

Interactions Global minimum energy (kcal/mol) Equilibrium distance (Å)

PBB–C60 −14.660 7.23

PBB–N@C60 −14.703 7.23

PBB–C60 = O −12.588 7.48

PBB–C70 −13.861 6.73 (in equatorial direction)

5 Conclusions

In this paper, we mathematically model the interactions between a PBB and various
types of fullerene structures, which are C60, N@C60, C60 = O and C70, using a
continuum approach and the Lennard-Jones potential. For each interaction depending
on the distance between the centres of the PBB and the fullerene structure, we obtain all
possible equilibrium configurations and the corresponding energies. This finding may
be used to improve the design of the high pressure liquid chromatography columns to
purify the mixture of fullerenes.

Acknowledgments The authors acknowledge financial support from the Faculty of Informatics, Univer-
sity of Wollongong (UOW) and UOW’s Internationalisation Linkage Grant Scheme.

6 Appendix A: Interaction energy between a point and a sphere

In this appendix, we derive analytical expressions for the interaction energy between a
point and a sphere. A point is assumed to be located at a distance δ from the centre of
the sphere where δ > R and R denotes the radius of the sphere. The origin is assumed
to be located at the centre of the sphere, and the schematic diagram of the coordinate
system of this problem is as shown in Fig. 9. The interaction energy between the point
and the spherical fullerene is then given by

E point−sphere = ηsphere

π∫

0

2π∫

0

(
− A

ρ6
δ

+ B

ρ12
δ

)
R2 sin γ dζdγ, (9)

where ρδ is a distance from a surface element of the sphere which is given by ρ2
δ =

R2 + δ2 − 2δR cos γ . The parameter ηsphere represents the mean atomic surface
density of the sphere, and A and B are the Lennard-Jones constants. For convenience,
we rewrite (9) in terms of

Jn =
π∫

0

2π∫

0

R2 sin γρ−2n
δ dζdγ, n = 3, 6, (10)
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Fig. 9 Model for the interaction
between a point and a sphere

to give

E point−sphere = ηsphere(−AJ3 + B J6). (11)

It can be shown that (10) is independent of ζ , and we may deduce

Jn = 2πR2

π∫

0

sin γ

(R2 + δ2 − 2δR cos γ )n
dγ.

On substituting t = R2 + δ2 − 2δR cos γ and integrating, we obtain

Jn = πR

δ(n − 1)

[
1

(δ − R)2(n−1)
− 1

(δ + R)2(n−1)

]
. (12)

Therefore, the interaction energy between a point and a spherical fullerene is given
by

E point−sphere = ηsphere
πR

δ

{
− A

2

[
1

(δ − R)4
− 1

(δ + R)4

]

+ B

5

[
1

(δ − R)10 − 1

(δ + R)10

]}
. (13)

7 Appendix B: Interaction energy between a point and a ring

Here, we consider the interaction energy between a point (or an atom) and a ring. On
using the Lennard-Jones potential function and the continuum approximation for a
line integral of the ring, the interaction energy of the system can be written as

123



1014 J Math Chem (2013) 51:1001–1022

E point−ring = ηring

2π∫

0

r

(−A

δ6 + B

δ12

)
dψ, (14)

where δ is the distance between a line element on the ring and the atom,

δ2 = r2 + ε2 + 2rε sin φ sinψ. (15)

Here r is the radius of the ring, and ηring is the mean atomic line density of the
ring. The Cartesian coordinates of the ring is as presented in Fig. 3. For convenience,
we write

E point−ring = ηring(−AK3 + BK6),

where

Kn = r

2π∫

0

δ−2ndψ = r

2π∫

0

1

(r2 + ε2 + 2rε sin φ sinψ)n
dψ

= r

2π∫

0

1

(r2 + ε2 + 2rε sin φ cosψ)n
dψ

= r

2π∫

0

1

[r2 + ε2 + 2rε sin φ − 4rε sin φ sin2(ψ/2)]n
dψ, n = 3, 6.

Note that we have interchanged sinψ and cosψ using the fact that they are periodic
functions with a period of 2π . On substituting t = sin2(ψ/2), we have

Kn = 2r

1∫

0

t−1/2(1 − t)−1/2

(r2 + ε2 + 2rε sin φ − 4rεt sin φ)n
dt,

= 2r

(r2 + ε2 + 2rε sin φ)n

1∫

0

t−1/2(1 − t)−1/2

(1 − μt)n
dt,

where μ = 4rε sin φ/(r2 + ε2 + 2rε sin φ). Therefore, we may write Kn in terms of
a hypergeometric function,

Kn = 2πr

(r2 + ε2 + 2rε sin φ)n
F(n, 1/2; 1;μ).
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The interaction energy between a point and a ring is then given by

E point−ring = 2πrηring

{
− A

(r2 + ε2 + 2rε sin φ)3
F(3, 1/2; 1;μ)

+ B

(r2 + ε2 + 2rε sin φ)6
F(6, 1/2; 1;μ)

}
. (16)

8 Appendix C: Interaction energy between a ring and a sphere

Assuming that an atom defined in Appendix A is located on a ring, the interaction
energy between a ring and a spherical fullerene can be obtained by evaluating another
line integral of E point−sphere. Then we have

Ering−sphere = rηring

2π∫

0

E point−sphere(ψ)dψ, (17)

where E point−sphere is defined by (9), again r denotes the radius of the ring and ηring

is the mean atomic line density of the ring. On substituting (11) and (12) into (17), we
have

Ering−sphere = ηringηsphere(−AI3 + B I6), (18)

where

In = πr R

(n − 1)

2π∫

0

1

δ

[
1

(δ − R)2(n−1)
− 1

(δ + R)2(n−1)

]
dψ, n = 3, 6. (19)

Equation (19) can be rewritten as

In = πr R

(n − 1)

2π∫

0

1

δ

(δ + R)2(n−1) − (δ − R)2(n−1)

(δ2 − R2)2(n−1)
dψ. (20)

On expanding the numerator in (20), we obtain

In = 2πr R

(n − 1)

n−2∑
k=0

(2n − 2)!R2n−2k−3

(2n − 2k − 3)!(2k + 1)! Hnk, (21)
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where

Hnk =
2π∫

0

δ2k

(δ2 − R2)2(n−1)
dψ. (22)

On substituting the expression of δ defined by (15) into (22), we obtain

Hnk =
2π∫

0

(r2 + ε2 + 2εr sin φ sinψ)k

(r2 + ε2 + 2εr sin φ sinψ − R2)2(n−1)
dψ. (23)

Since the integrand in (23) is a periodic function with the period of 2π , then cosψ
and sinψ are interchangeable. Therefore,

Hnk =
2π∫

0

(r2 + ε2 + 2εr sin φ cosψ)k

(r2 + ε2 + 2εr sin φ cosψ − R2)2(n−1)
dψ. (24)

Next, we use the trigonometric identity cosψ = 1 − 2 sin2(ψ/2), expanding the
numerator in (24) in terms of sin2(ψ/2) to obtain

Hnk =
k∑

m=0

k!(r2 + ε2 + 2εr sin φ)m(−4εr sin φ)k−m

(k − m)!m!

×
2π∫

0

sin2k−2m(ψ/2)[
r2 + ε2 + 2εr sin φ − 4εr sin φ sin2(ψ/2)− R2

]2(n−1)
dψ.

On substituting t = sin2(ψ/2), we have

Hnk =
k∑

m=0

k!(r2 + ε2 + 2εr sin φ)m(−4εr sin φ)k−m

(k − m)!m!(r2 + ε2 + 2εr sin φ − R2)2n−2

×2

1∫

0

t2k−2m−1/2(1 − t)−1/2

(1 − μt)2(n−1)
dt, (25)

where in this case μ = 4εr sin φ/(r2 + ε2 + 2εr sin φ − R2). The Eq. (25) can be
written in terms of hypergeometric functions,

Hnk =
k∑

m=0

k!(r2 + ε2 + 2εr sin φ)m(−4εr sin φ)k−m

(k − m)!m!(r2 + ε2 + 2εr sin φ − R2)2n−2

× 2π1/2

(2k − 2m + 1/2)
F(2n − 2, 2k − 2m + 1/2; 2k − 2m + 3/2;μ). (26)
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On substituting (26) into (21), we obtain the final form of In as follows

In = 4π3/2r R

(1 − n)

n−2∑
k=0

(2n − 2)!R2n−2k−3

(2n − 2k − 3)!(2k + 1)!

×
k∑

m=0

k!(r2 + ε2 + 2εr sin φ)m(−4εr sin φ)k−m

(k − m)!m!(r2 + ε2 + 2εr sin φ − R2)2n−2(2k − 2m + 1/2)

×F(2n − 2, 2k − 2m + 1/2; 2k − 2m + 3/2;μ). (27)

The interaction energy between a ring and a sphere can be obtained by substituting
In defined by (27) for n = 3 and 6 into (18).

9 Appendix D: Interaction energy between a ring and an ellipsoid

In Cartesian coordinate system, an arbitrary point on the ellipsoid has coordinates
(a sin γ cos η, b cos γ, a sin γ sin η), and an arbitrary point on the ring has coordinates
(X,Y, Z) where

X = r cosψ cos θ − r sinψ sin φ sin θ,

Y = r sinψ cosφ + ε cos ζ,

Z = r cosψ sin θ + r sinψ sin φ cos θ + ε sin ζ.

The schematic model for a system of a ring and an ellipsoid is depicted in Fig. 7.
The distance between an arbitrary point on the ring and an arbitrary point on then
surface of the ellipsoid is then given by

ρ2 = (a sin γ cos η − X)2 + (b cos γ − Y )2 + (a sin γ sin η − Z)2

= K1 + K2 cos(η − η0),

where K1 = a2 sin2 γ + X2 + (b cos γ − Y )2 + Z2, K2 = 2a sin γ (X2 + Z2)1/2 and
η0 = arctan(Z/X). On using the Lennard-Jones potential function and the continuum
approximation, the interaction energy between the ring and the ellipsoid of C70 is

Ering−elli psoid = ηringηelli psoid

∫

�

∫

S

(
− A

ρ6 + B

ρ12

)
d Sd�,

where d S is the surface area element of the ellipsoid and d� denotes the arc length
element of a line integral of the ring. For convenience, we write

Ering−elli psoid = ηringηelli psoid(−AJ3 + B J6), (28)
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where

Jn =
∫

�

∫

S

1

ρ2n
d Sd�.

Upon parameterising, the integral Jn becomes

Jn = ar

π∫

0

2π∫

0

2π∫

0

1

ρ2n
sin γ

√
a2 cos2 γ + b2 sin2 γ dηdψdγ,

= ar

π∫

0

2π∫

0

sin γ
√

a2 cos2 γ + b2 sin2 γ Indψdγ, (29)

where

In =
2π∫

0

1

[K1 + K2 cos(η − η0)]n
dη.

Since cos(η − η0) has period 2π ,

In =
2π∫

0

1

(K1 + K2 cos η)n
dη.

On substituting t = sin2(η/2), we have

In = 2

1∫

0

t−1/2(1 − t)−1/2

(K1 + K2 − 2K2t)n
dt.

We can write the above integral in terms of a hypergeometric function,

In = 2π

(K1 + K2)n
F

(
n,

1

2
; 1; 2K2

K1 + K2

)
.

Since

F(a, b; 2b; z) = (1 − z/2)−a F

(
a

2
,

a

2
+ 1

2
; b + 1

2
;
(

z

(2 − z)

)2
)
,

123



J Math Chem (2013) 51:1001–1022 1019

we have

In = 2π

K n
1

F

(
n

2
,

n

2
+ 1

2
; 1; K 2

2

K 2
1

)
. (30)

We substitute (30) into (29) and then expand the hypergeometric function to obtain

Jn = 2πar
∞∑

i=0

( n
2

)
i

( n
2 + 1

2

)
i

i !2
π∫

0

sin γ
√

a2 cos2 γ + b2 sin2 γ Hni dγ,

where

Hni =
2π∫

0

K 2i
2

K n+2i
1

dψ.

Next, we may write expressions of K1 and K2 in terms of sinψ and cosψ to obtain

K1 = α1 +
√
α2

2 + α2
3 cos(ψ − ψ0),

K2 = (2a sin γ )2i (α4 + α5 cos2 ψ + α2 cosψ + α6 sinψ),

where

α1 = a2 sin2 γ + b2 cos2 γ + r2 + ε2 − 2bε cos γ cos ζ,

α2 = 2εr sin θ sin ζ,

α3 = 2r(ε cosφ cos ζ + ε sin φ cos θ sin ζ − b cos γ cosφ),

α4 = r2 sin2 φ + ε2 sin2 ζ,

α5 = r2 cos2 φ,

α6 = 2εr sin φ cos θ sin ζ,

ψ0 = arctan(α3/α2).

Therefore,

Hni = (2a sin γ )2i

2π∫

0

(α4 + α5 cos2 ψ + α2 cosψ + α6 sinψ)i[
α1 +

√
α2

2 + α2
3 cos(ψ − ψ0)

]n+2i
dψ.

Again since cos(ψ −ψ0) has period 2π , we can replace ψ by ψ +ψ0, so we have
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Hni = (2a sin γ )2i
2π∫

0

[α4 + α5 cos2(ψ + ψ0)+ α2 cos(ψ + ψ0)+ α6 sin(ψ + ψ0)]i
(α1 +

√
α2

2 + α2
3 cosψ)n+2i

dψ.

(31)

On rearranging the numerator of (31) in terms of ψ , we have

Hni =(2a sin γ )2i

2π∫

0

(β1+β2 cos2 ψ + β3 sinψ cosψ+β4 sinψ + β5 cosψ)i

(α1+
√
α2

2 +α2
3 cosψ)n+2i

dψ,

(32)

where β1 = α4 + α5 sin2 ψ0, β2 = α5 cos(2ψ), β3 = −α5 sin(2ψ0),

β4 = −α2 sinψ0 +α6 cosψ0 and β5 = α2 cosψ0 +α6 sinψ0. Then, equation for Hni

becomes

Hni = (2a sin γ )2i
i∑

k=0

k∑
m=0

m∑
p=0

p∑
q=0

i !β i−k
1 βk−m

2 β
m−p
3 β

q
4 β

p−q
5

(i − k)!(k − m)!(m − p)!(p − q)!q!

×
2π∫

0

cos2k−m−q ψ sinm−p+q ψ

(α1 +
√
α2

2 + α2
3 cosψ)n+2i

dψ.

On substituting u = sin2(ψ/2), we have

Hni = (2a sin γ )2i
i∑

k=0

k∑
m=0

m∑
p=0

p∑
q=0

i !β i−k
1 βk−m

2 β
m−p
3 β

q
4 β

p−q
5

(i − k)!(k − m)!(m − p)!(p − q)!q!

×
2k−m−q∑

s=0

(−1)s22m−p+q+s(2k − m − q)!
(2k − m − q − s)!s!(α1 +

√
α2

2 + α2
3)

n+2i

×
1∫

0

u(m−p+q+2s−1)/2(1 − u)(m−p+q−1)/2

(1 − νt)n+2i
du,

where ν = 2
√
α2

2 + α2
3/(α1 +

√
α2

2 + α2
3), and therefore, we may write this equation

in terms of the hypergeometric function
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Hni = (2a sin γ )2i
i∑

k=0

k∑
m=0

m∑
p=0

p∑
q=0

i !β i−k
1 βk−m

2 β
m−p
3 β

q
4 β

p−q
5

(i − k)!(k − m)!(m − p)!(p − q)!q!

×
2k−m−q∑

s=0

(−1)s22m−p+q+s(2k − m − q)!
(2k − m − q − s)!s!(α1 +

√
α2

2 + α2
3)

n+2i

×�(w/2 + s)�(w/2)

�(w + s)
F(n + 2i, w/2 + s;w + s; ν),

where w = m − p + q + 1. Now, we use the relation F(a, b; c; z) = (1 − z)−b F(b,
c − a; c; z(z − 1)−1) to terminate the hypergeometric series, and we may deduce

Hni = (2a sin γ )2i
i∑

k=0

k∑
m=0

m∑
p=0

p∑
q=0

i !β i−k
1 βk−m

2 β
m−p
3 β

q
4 β

p−q
5

(i − k)!(k − m)!(m − p)!(p − q)!q!

×
2k−m−q∑

s=0

(−1)s22m−p+q+s(2k − m − q)!
(2k − m − q − s)!s!(α1 +

√
α2

2 + α2
3)

n+2i

×�(w/2 + s)�(w/2)

�(w + s)
F(n + 2i, w/2 + s;w + s; ν).

Finally, the expression for Jn is obtained as

Jn = πr
∞∑

i=0

( n
2

)
i

( n
2 + 1

2

)
i (2a)2i+1

i !

×
i∑

k=0

k∑
m=0

m∑
p=0

p∑
q=0

(2k − m − q)!
(i − k)!(k − m)!(m − p)!(p − q)!q! (33)

×
2k−m−q∑

s=0

(−1)s22m−p+q+s

(2k − m − q − s)!s!
�(w/2 + s)�(w/2)

�(w + s)
× Pnikpqs,

where

Pnikpqs =
π∫

0

β i−k
1 βk−m

2 β
m−p
3 β

q
4 β

p−q
5 sin2i+1 γ

√
a2 cos2 γ + b2 sin2 γ

(α1 +
√
α2

2 + α2
3)

n+2i

×F(n + 2i, w/2 + s;w + s; ν)dγ,

where Pnikpqs needs to be evaluated numerically. Therefore, the expression for the
interaction energy between a ring and an ellipsoid can be obtained by substituting Jn

defined by (33) for n = 3 and 6 into (28).
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